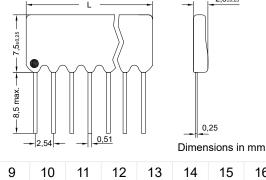

Precision Resistors

Resistor Network Series MONO

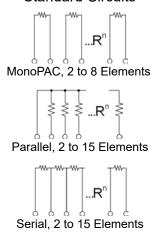

Mechanical DataMaterialNiCrSubstrate MaterialAluminaBodyEpoxy - coatedTerminalsCopperPlatingTin

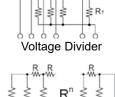
MonoNet

- 3 16 Pin Single In-Line Network
- Cost-efficient standard layouts
- Custom-built solutions
- Up to 15 individual resistive elements
- · Low-noise, long term stability

MonoPac

- 4 16 Pin SIP isolated resistors
- · Space-saving assemblies
- Up to 8 individual resistive elements
- Low-noise, long term stability




Number of Pins	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Length L in mm (±0,5)	7,6	10,2	12,7	15,0	17,7	20,3	22,8	25,4	27,9	30,4	33,0	35,5	38,1	40,6

-55°C to +125°C

Standard Circuits

Storage Temperature Range

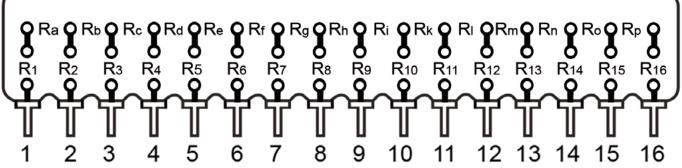
R/2R Network

Specification				
Standard Res	sistance Range		100Ω - 100ΚΩ	
Temperature	Coefficient	Tracking	±2ppm	
Temperature	Coefficient	Absolute	±5ppm, ±10ppm, ±25ppm	
Resistance	Tolerance	Ratio	±0,05% (±0,02% upon request)	
Resistance	Tolerance	Absolute	±0,1%, ±0,2%, ±0,5%, ±1%	
Operating Vo	ltage (max.)		100V	
Power Dissip	ation (max.)		0,1 Watts per element	
Operating Te	mperature Range		0°C - 70°C	
Insulation Re	sistance		10.000 MOhm	

MEGATRON MonoPac and MonoNet are thin film resistor networks in monolithic design with values between 100Ω - $100k\Omega$ with very high precision in tracking and ratio matching. They can be supplied in small quantities in our standard circuit designs or made as per your custom design. The special advantage is the freedom to position the resistor elements as per individual requirement without many restrictions. This allows the development engineer to get a very low noise and high stability performance with short lead times. Typical applications are in Analog Circuits, Test and Measuring instruments, Industrial Instrumentation etc.

Please use for your inquiries and application our form or ask our well trained technical staff!

12 / 2021


Date:

Page:

Precision Resistors

Resistor Network Series MONO

Configuration

- Choice of the typical circuit
- Definition of the number of necessary connections
- Predefinition of the tolerance, absolutely and matching tolerance ("-Pac" resistor elements can be paired if requested to measured sets for a tolerance and TCR performance)
- Definition of the TCR, absolute and tracking
- Definition of the separate resistance values (with "-PAC" and "chip" variants different tolerances and temperature coefficients between single resistors are realizable)

Circuit	Number of Pins	TCR absolute	TCR tracking	Tolerance absolute	Tolerance Ratio

	Function oo/o o	Value (Ω)	Remark (e.g. 5ppm, 0,01%)
R ₁			
R ₂			
Rз			
R ₄			
R ₅			
R ₆			
R ₇			
R ₈			
R ₉			
R 10			
R ₁₁			
R ₁₂			
R 13			
R ₁₄			
R 15			
R 16			

R1R16, RaRp = Position
oo = closed by element or contact
o o = not connected

[w] [w]R ⁿ [w]
Array, 2 to 8 Elements
Parallel, 2 to 15 Elements
Serial, 2 to 15 Elements
₩ ₩ R:
Divider
\$ \$ \$R ⁿ \$ \$ 2R 2R 2R 2R 2R 2R 2R

	Function oo/o o	Value (Ω)	Remark (e.g. 5ppm, 0,01%)
Ra			
R₅			
Rc			
R₀			
Re			
Rf			
Rg			
Rh			
Ri			
Rk			
Rı			
Rm			
Rn			
R₀			
Rp			

Date:

Page:

12 / 2021 2 of 2

Example for an array: R_1 = o--o; R_a =10k Ω ; R_2 = o--o; R_b = o o;... Example Parallel: R_1 = o--o; R_a =o--o; R_2 = 10k Ω ; R_b = o--o;... Divider: R_1 = 1k Ω ; R_a =o--o; R_2 = o--o; R_b = o--o; R_3 = 1k Ω ;...

With the receipt of this configuration data sheet we immediately create for you a cost offer about prices, least order amounts or if necessary initial costs as well as delivery times.