

Series HTS25

Series HTS25 – singleturn, digital output

Key features HTS25:

- SPI interface with 14 bit resolution and 5 V input voltage Attention: Signal transmission only possible via short signal lines
- SSI interface with 10-18 bit resolution and wide input range (4.8 to 42 V)

Electrical data HTS25 – singleturn, digital	Electrical data HTS25 – singleturn, digital output									
Output signal	SPI	SSI								
Effective electrical angle of rotation 1.)	36	60°								
Independent linearity (best straight line) 1.)	±0,3% @ 360°	please contact us								
Absolute linearity 1.)	±0,6% @ 360°	please contact us								
Resolution	14 Bit	10-18 Bit								
Update rate	200 μs	18 µs								
Supply voltage	5 VDC ±10 %	4.8 to 42 V								
Power consumption (no load)	≤ 12 mA	≤ 24 mA (for 5 V input)								
Insulation voltage 1.)	1000 VAC @	50 Hz, 1 min								
Insulation resistance 1.)	2 MOhm @ 500 VDC, 1 min									
MTTF (SN29500-2005-1)	2046a	800a								

^{1.)} According IEC 60393

For details on zero point definition and output programming see page 29.

Series HTS25

Order Code HTS25 – singleturn, digital o	Order Code HTS25 – singleturn, digital output									
Description	Se	lection: standard= bla	ck/bold , possible opti	ons=grey/italic						
Series	HTS25									
Shaft diameter, shaft length: Shaft diameter \emptyset 6 mm, shaft length 12 mm Shaft diameter \emptyset 4 mm, shaft length 10 mm Custom shaft dimensions [mm] $\emptyset \le 6.35$ mm		6x12 4x10 XxXX								
Supply voltage / output signal: 4.8 to 42 V / SSI, 16 Bit resolution 4.8 to 42 V / SSI, custom resolution 10 to 18 bit 5 VDC ± 10% / SPI (14 Bit)			SSI 16 SSI [10-18] 05SPI							
Electrical connection, cable length: 1 m round cable, axial 1 m round cable, radial Connector M8, radial Connector M8, axial* Round cable, customer-specific cable length [X.: Round cable]	4			PG PGR M8R M8 PGX,XX PGRX,XX						

^{*} M8 axial connector variant not available for SSI

Order example

Requirement:

Shaft Ø 6.00 mm, shaft length 12 mm, 14 Bit/5 VDC/SPI, round cable 1 m, radial

Example for order code:

HTS25 6x12 05SPI PGR

Order example

Requirements:

Shaft Ø 4.00 mm, shaft length 20 mm, Electronics 12 Bit/4,8 to 42 VDC/SSI, round cable 1 m radial

Example for order code:

HTS25 4x20 SSI 12 PGR

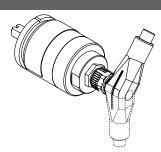
Please be aware of limiting factors in the cable lengths / transmission limits of serial communication.

Baud rate/clock frequency must be adjusted to avoid transmission problems.

Series HTS25

Cable and pin assignment for option 05SPI								
Function:	Option PG(R), round signal cable	Option M8(R), 8 pin						
VSUP	red	1						
GND	black	2						
CS, MOSI	yellow	3						
CLK	green	4						
DATA	orange	5						
-	brown n/c	6 n/c						
-	-	7 n/c						
-	-	8 n/c						

Cable and pin assignment for option SSI interface								
Function:	Option PG(R), round signal cable	Option M8R, 8 pin						
GND	black	1						
VSUP	red	2						
CLK+	brown	3						
CLK-	orange	4						
DATA+	yellow	5						
DATA-	green	6						
-	-	7 n/c						
-	-	8 n/c						


Connector M8(R) – pin assignment for 8-pin connectors

Pin-Numbering of socket connector in the encoder housing

The orientation of the connector relative to the encoder body is not defined and varies from encoder to encoder. When using right-angle connectors in combination with axial outlets, the orientation of the cable outlet is therefore not defined.

If you need a defined orientation of the cable outlet, please choose our housings with radial cable outlet and use straight mating connectors.

Orientation will vary when using angled connectors.

Series HTS25

Synchronous Serial Interface (SSI) - A simple yet robust interface

The synchronous serial interface (SSI) is a serial interface, i.e. the individual bits are transmitted in chronological order. The basis of data transmission is a shift register in which the encoder provides its current measured value. The rotary encoders function as so-called SSI slaves, because they only supply the values from the shift register at the DO (data out) output on receipt of a clock sequence sent out by the SSI master, the so-called "clock" signal (CLK). This clock signal is applied to the CLK input of the encoder. Both the clock signal and the data signal are transmitted differentially, which makes this type of data interface particularly robust against interference. In short, SSI enables the memory of a sensor to be read out reliably from an external source.

Data transmission

The SSI electronics of the encoder reacts to the first falling edge that arrives via the CLK line of the master, loads the current data into the register and transmits it bit by bit to the receiver with each rising edge of the clock. The composition of the transmitted information is not standardised and varies from manufacturer to manufacturer, sometimes even from product to product.

In MEGATRON's encoders, the position information is transmitted first (starting with the Most Significant Bit MSB, ending with the Least Significant Bit LSB). The maximum value of this information is limited by the number of bits transmitted. This is also the resolution of the measurement data. For example, a resolution of 10 bits corresponds to a number of 210 = 1024 steps, which are divided over the angular range of 360°. Thus, after receiving the position information, it is easy to calculate back to the absolute angle, because each single step would correspond to 360/1024 = 0.35°.

The position information is followed by a bit sequence of status data that can be of great interest for the application. This includes, for example, the status of the electronics (readiness, correct supply voltage), but also whether the magnetic field acting on the Hall sensor is within the permissible limits (i.e. the distance of the magnet from the sensor). The last bit is the parity bit. This takes the values HIGH or LOW as required, so that the encoder always sends an even number of bits (even parity). The receiver, i.e. the SSI master, must be set to the total length of the transmitted information including the parity bit.

At the end of the process, the master usually does not send any further edges to the encoder via the CLK line. The encoder then waits for a time t_m , (retriggerable monoflop) since the last CLK edge and then updates the data in the shift register. This is therefore the minimum pause time between two consecutive clock sequences when the master requires new, updated measurement data. The exact protocol description of the HTS encoders follows on the next page

Ring shift

However, if clock edges continue to be sent, then the encoder will start transmitting the same data set repeatedly after a zero bit. This procedure is also called ringshift. This makes sense, for example, if the parity bit would be incorrect from the master's point of view, if the data is otherwise corrupt and a new transmission is therefore requested, or if a higher transmission reliability is generally desired by comparing multiple transmissions of the same data. With ring shift, the transmission is also terminated and the latest measurement data is only loaded into the register again when no more clock signals arrive at the encoder for a minimum time $t_{\rm m}$.

Early stop

The transmission of the data can be interrupted by the master at any time, e.g. also after the 10th bit. Even then, the internal timer (monoflop) expires, causing the data in the register to be reloaded after the time t_m . In this way, for example, only a part of the encoder data can be read out (e.g. 10 of the available 16 bits, no status data at all) and a higher update rate can be achieved, as the remaining information is simply omitted.

Notes on cable length

Specifications are subject to change without notice

The higher the transmission rate (clock rate), the smaller the realisable cable length with SSI. These are physical limits that are not limited by the sensor product itself. A simple blanket statement about the actual realisable length is not easily possible.

The cable length that can actually be realised in the application is influenced by the following factors:

- Quality and design of the cable (shielding, conductor cross-section, conductor resistance, twisted cores, etc.).
- Ambient conditions (sources of interference such as motors, etc.)

We explicitly refer to the RS-422 standard regarding cable lengths.

Series HTS25

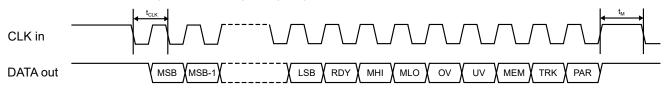
Protocol description - Synchronous Serial Interface (SSI)

The HTS25K SSI encoder provides a 10-bit to 18-bit absolute position output, while 16 bit is the standard (ex works) configuration. This means that the full rotation angle (360°) is divided into steps of the respective resolution (16 bits yields 65.536 steps of approx. 0.005 degrees).

Standard configuration (16 bit output) yields the following pulse train, consisting both of position and status data:

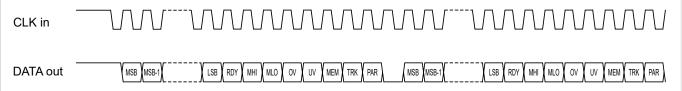
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 bits position data


7 bits status data

The data structure for any resolution is as follows:

Posi	tion data	(10 to 18	bits)			St	tatus (7-b	it)			Parity 1 bit	
MSB	MSB-1		LSB	RDY	MHI	MLO	OV	UV	MEM	TRK	PAR	


Abbreviation	Description
MSB to LSB	n-bits position data, selectable from 10 to 18 bits ex works, standard is 16 bit
RDY	The encoder is ready (if value is HIGH).
MHI	This indicates that the magnet strength detected by the Hall chip is too strong. If this is consistently HIGH, change to a weaker magnet or increase the distance between the encoder and the magnet. The value for this alarm is displayed as 1.
MLO	This indicates that the magnet strength detected by the Hall chip is too weak. If this is consistently HIGH, change to a stronger magnet or decrease the distance between the encoder and the magnet. The value for this alarm is displayed as 1.
OV	Overvoltage error at Hall Chip if HIGH. Might indicate defective voltage regulator (encoder's internal regulator).
UV	Undervoltage error if HIGH. Might indicate too low input voltage or defective voltage regulator (encoder's internal regulator).
MEM	If HIGH, a memory corruption has occurred. Perform a power cycle to reload the memory.
TRK	This indicates that the angular error has exceeded 5° within 5 ms. When this value stays at HIGH, perform a power-cycle to re-initialize the sensor.
PAR	Parity is even

Data is transmitted according to the following timing diagram:

Symbol	Description	Min.	Тур.	Max.
t _{CLK}	Serial clock period	4 µs		t _{M/2}
t _M	monoflop, time between two successive SSI reads		16.5 µs	18 µs

Data is latched on the first CLK falling edge and is transmitted on the next falling edge. Both signals are transmitted differentially and therefore have 2 connections (+/-) each. Data will be refreshed when the next monoflop (t_M) expires. If another clock train is sent before this time expires, the same position data is output, and the data is separated by a single low bit:

Series HTS25

Protocol description - Serial Peripheral Interface (SPI)

Introduction

The encoder is configured as a Slave node. The serial protocol of the is a three wires protocol (/SS, SCLK, MOSI-MISO):

- /SS output is a 5 V tolerant digital input
- SCLK output is a 5 V tolerant digital input
- MOSI-MISO output is a 5 V tolerant open drain digital input/output

Basic knowledge of the standard SPI specification is required for the good understanding of the present section.

Even clock changes are used to sample the data. The positive going edge shifts a bit to the Slave's output stage and the negative going edge samples the bit at the Master's input stage.

MOSI (Master Out Slave In)

The Master sends a command to the Slave to get the angle information.

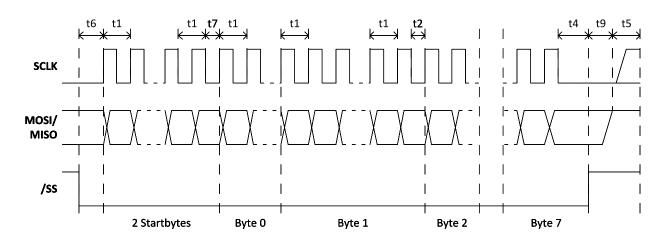
MISO (Master In Slave Out)

The MISO of the slave is an open-collector stage. Due to the capacitive load, a >1 k Ω pull-up is used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical wire of the ETS25.

/SS (Slave Select)

The /SS output enables a frame transfer. It allows a re-synchronization between Slave and Master in case of a communication error.

Master Start-Up


/SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized before the first frame transfer.

Slave Start-Up

The slave start-up (after power-up or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-Impedance) until the Slave is selected by its /SS input. The encoder will cope with any signal from the Master while starting up.

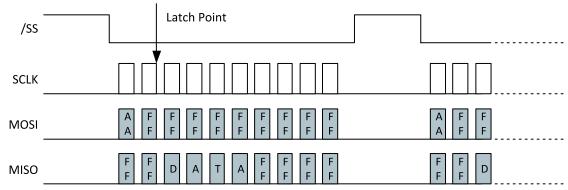
Timing

To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle of a byte transfer. Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not have seen /SS inactive.

Series HTS25

Protocol description - Serial Peripheral Interface (SPI) (continuation)

Descriptio	n Timings		
Timings	Min	Max	Remarks
t1	2.3 µs	-	No capacitive load on MISO. t1 is the minimum clock period for any bits within a byte.
t2	12.5 µs	-	t2 the minimum time between any other byte
t4	2.3 µs	-	Time between last clock and /SS=high=chip de-selection
t5	300 μs	-	Minimum /SS = Hi time where it's guaranteed that a frame resynchronizations will be started
t5	0 µs	-	Maximum /SS = Hi time where it's guaranteed that NO frame resynchronizations will be started.
t6	2.3 µs	-	The time t6 defines the minimum time between /SS = Lo and the first clock edge
t7	15 µs	-	t7 is the minimum time between the StartByte and the Byte0
t9	-	< 1 µs	Maximum time between /SS = Hi and MISO Bus HighImpedance
T _{Startup}	-	< 10 ms	Minimum time between reset-inactive and any master signal change


Slave Reset

On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is enabled only after the completion of the first synchronization (the Master deactivates /SS for at least t5).

Frame Layer

Command Device Mechanism

Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer. The latch point for the angle measurement is at the last clock before the first data frame byte.

Data Frame Structure

A data frame consists of 10 bytes:

• 2 start bytes (AAh followed by FFh)

Specifications are subject to change without notice

- 2 data bytes (DATA16 most significant byte first)
- 2 inverted data bytes (/DATA16 most significant byte first)
- 4 all-Hi bytes

The Master should send AAh (55h in case of inverting transistor) followed by 9 bytes FFh. The Slave will answer with two bytes FFh followed by 4 data bytes and 4 bytes FFh.

Series HTS25

Protocol description - Serial Peripheral Interface (SPI) (Fortsetzung)

Timing

There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined.

Data Structure

The DATA16 could be a valid angle or an error condition. The two meanings are distinguished by the LSB.

DATA1	DATA16: Angle A[13:0] with (Angle Span)/2 ¹⁴														
Most Significant Byte										Lea	st Sign	ificant E	3yte		
MSB							LSB	MSB							LSB
A13	A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 1											1			

DATA1	DATA16: Error														
	Most Significant Byte								Least Significant Byte						
MSB							LSB	MSB							LSB
E15	E14	E13	E12	E11	E10	E9	E8	E7	E6	E5	E4	E3	E2	E1	E0

DATA1	6: Error	
BIT	Name	Description
E0	0	
E1	1	
E2	F_ADCMONITOR	ADC Failure
E3	F_ADCSATURA	ADC Saturation (Electrical failure or field too strong)
E4	F_RGTOOLOW	Analog Gain Below Trimmed Threshold (Likely reason: field too weak)
E5	F_MAGTOOLOW	Magnetic Field Too Weak
E6	F_MAGTOOHIGH	Magnetic Field Too Strong
E7	F_RGTOOHIGH	Analog Gain Above Trimmed Threshold (Likely reason: field too strong)
E8	F_FGCLAMP	Never occurring in serial protocol
E9	F_ROCLAMP	Analog Chain Rough Offset Compensation: Clipping
E10	F_MT7V	Device Supply VDD Greater than 7V
E11	-	
E12	-	
E13	-	
E14	F_DACMONITOR	Never occurring in serial protocol
E15	-	

Angle Calculation

All communication timing is independent (asynchronous) of the angle data processing. The angle is calculated continuously by the Slave every 350 µs at most. The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by the Slave, because any internal failure of the Slave will lead to a soft reset.

Error Handling

In case of any errors listed above, the Serial protocol will be initialized and the error condition can be read by the master. The slave will perform a soft reset once the error frame is sent. In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error...) the Slave's serial protocol is not initialized. The MOSI/MISO output will stay Hi-impedant (no error frames are sent).

Drawings Family HTx25

Drawing HTx25 - axial versions (option PG and M8), shaft dimensions, drilling pattern and zero position 21,30 max 30,40 ±0,50 છું M3 x 6/9 (6x) +0,014 Ø2 +0,024 x5L Ø 19 ±0,05 1,20 ±0,10 Ø18 ±0,05 BINDER male panel mount connector, 30,40 ±0,50 Range M8, 718 Series 2,70 ±0,20 or interoperable product 2,50 ±0,30 1,50 ±0,10 U±0,10 A±1 13,50 ±1 ,50 Tightening torque of M3 screw ≤ 0.6 Nm, to be locked by medium strength threadlocking **Drilling Pattern** adhesive if required ⊕31 Ø2 H7 Α ⊕ | Ø 0,1 | A | Ø 15 H7 (3x M3) Ø3,2 H11 (6x) view shows 0° position | ⊕ | ∅ 0,1 | A Standard shaft dimensions / tolerances Standard type 6 mm Standard type 4 mm Other types ≤ 6.35 mm Shaft length A 12 +/- 1 mm, 10 +/- 1 mm A (custom length)

MEGATRON Elektronik GmbH & Co. KG • Hermann-Oberth-Strasse 7 • 85640 Putzbrunn / Munich Tel.: +49 89 46094-0 • www.megatron.de • info@megatron.de

4 h9 mm

1 +/- 0.1 mm

3.5 mm +/- 0.1 mm

D h9 (custom diameter)

D - 1 mm +/- 0.1 mm

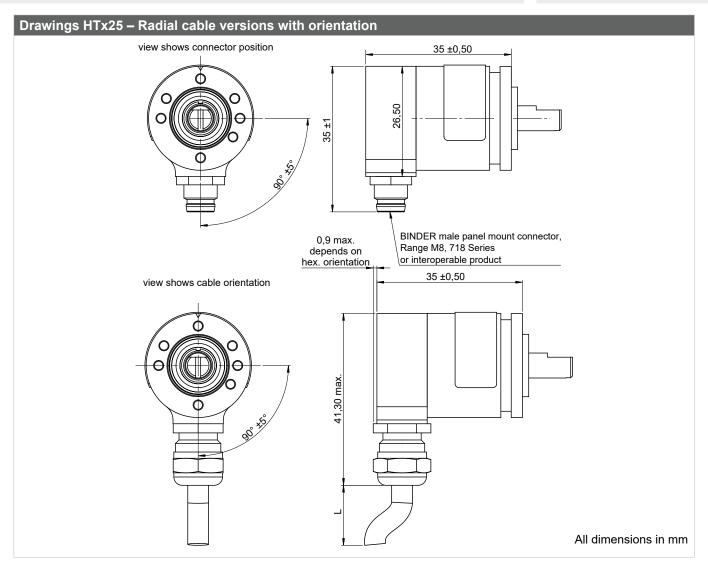
6 +/- 0.1 mm

6 h9 mm

6 +/- 0.1 mm

4.5 +/- 0.1 mm

All dimensions in mm


Shaft diameter D

Shaft flattening B

Shaft flattening U length

Drawings Family HTx25

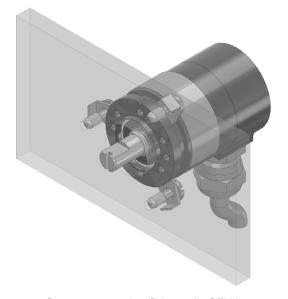
Cable	Cable specs for option PG(R) (round control cable)										
Option	Standard cable length L	Number of single strands (depends on electronics)	Cable sheath Ø or width	Single strands cross section	Allowed tolerance (L)	Minimum bending radius					
		3				10 x D Ø (D = cable sheath diameter Ø)					
		6		AWG26							
PG PGR	Standard 1000 mm	8			-20 mm to +40 mm						
1 011		10		A\A/C29							
		12		AWG28							
		Cab	les without cable s	shield							

 $^{(\}sp{*})$ Tolerances according IPC Association

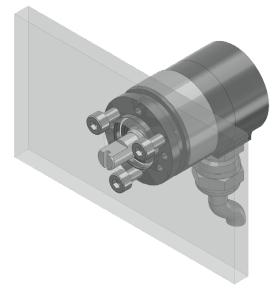
Cable length tolerances – custom lengths			
Length L	Tolerance		
≤ 0.3 m	+25 mm / -20 mm		
> 0.3 m - 1.5 m	+40 mm / -20 mm		
> 1.5 m - 3 m	+100 mm / -40 mm		
> 3 m - 7.5 m	+150 mm / -60 mm		

Wire harness length measured from sensor face including connector. Minimum cable length: 0.08 m (for round cable). Please contact us for lengths > 3 m regarding handling and packaging.

Family HTx25 **Mechanical Data**


Mechanical and Environmental data		
Shaft type	Solid shaft	
Mechanical angle of rotation 1.)	Endless	
Lifetime 2.)	@100 % of max. permissible radial shaft load >1.4x10E8 shaft revolutions @80 % of max. permissible radial shaft load >2x10E9 shaft revolution @20 % of max. permissible radial shaft load >1.7x10E10 shaft revolutions	
Bearing	2 pcs. groove ball bearings type 2RS	
Max. operational speed (with shaft sealing)	max. 12.000 rpm	
Operational torque: (@ room temperature and 10 rev/min)	≤ 0.3 Ncm	
Operating temperature range	Option M8 (connector) -25 to +80°C Option PG (cable gland incl. cable) -30 to +85°C Kabel fest verlegt -10 to +85°C Kabel in Bewegung	
Storage temperature range	-30 to +105°C	
Protection grade (IEC 60529) front side	IP65S	
Protection grade (IEC 60529) rear side	Option PG: IP68 (cable ends excluded) Option M8: IP67 (when mated with IP67 type M8 cable)	
Vibration (DIN EN 60068-2-64:2008 + A1: 2019)	±1.5 mm / 30 g / 10 to 2000 Hz / 16 frequency cycles (3x4 h)	
Shock (DIN EN 60068-2-27)	400 m/s² / 6 ms / half sine (100±5) shocks	
Housing diameter	Ø 25 mm	
Housing depth	In dependency to the electrical connection position: axial 51.7 mm (PG) / 43.9 mm (M8) radial 35 mm	
Shaft diameter	Standards: Ø6 mm, Ø4 mm, details see drawings Option Custom diameter [mm] Ø ≤ 6.35 mm	
Max. radial load	80 N (load point 80% in dependency to the visible standard shaft length)	
Max. axial load	40 N (axial application of force onto the shaft end)	
Masse (zirka)	HTx25 mit Stecker M8(R) 40 g HTx25 mit Kabelverschraubung und 1 m Signalkabel PG(R) 69 g	

^{1.)} According IEC 60393
2.) Determined by climatic conditions according to IEC 68-1, para. 5.3.1 without load collectives



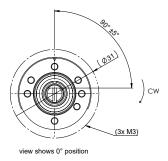
Mechanical Data Family HTx25

Mechanical and environmental data, miscellaneous				
Sensor mounting	 Via threaded holes integrated in the sensors head by use of stainless steel screws M3x0.5 Via synchro flange with optional available servo mount fixing nails SFN1 incl. screws M3 x 0.5 from MEGATRON (not enclosed), recommended at angles of 120° 			
Mounting hardware included	 To attach the rotary encoder using a synchro flange, the MEGATRON SFN1 synchro clamps available as accessories For the electrical connection option M8 (R), cables and mating connectors are not part of the scope of delivery. M8 connectors with cables are available as accessories from MEGATRON 			
Fastening torque per screw for fastening of the rotary encoder	≤ 0.6 Nm (M3 screw, thread tensile strength class 5.6) For screw securing, the use of a medium-strength thread securing adhesive is recommended			
Material shaft	Stainless steel			
Material housing	Aluminium			
Material cable gland (PG)	Stainless steel			
Material connector M8	CuZn nickel-plated			

Servo mount using fixing nails SFN1 incl. 3 screws M3 x 0.5

Flange mount using 3 screws M3

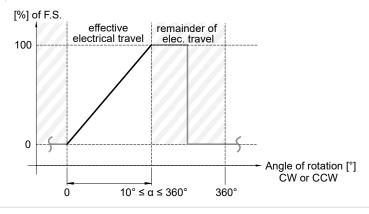
Immunity / Electrostatic Discharge / REACH / RoHS				
EN 61000-4-3 RF sine wave	Class A			
EN 61000-4-6 Conducted sine wave	Class A			
EN 61000-4-8 Power frequency magnetic fields	Class A			
EN 61000-4-2 ESD	Class B			
REACH Regulation (EC) 1907/2006 including the SVHC list				
RoHS Directive 2011/65/EU				


Mechanical Data Family HTx25

Definition of the zero position / anti-rotation pin

Output at the zero point:

HTA25 (analogue outputs): Output signal 0% full scale (F. S.) HTP25 (PWM output): duty cycle 10% (10% duty cycle) HTS25 (serial output): Output signal 0% full scale (F. S.) HTI25 (incremental output): The index signal is output (Z)


Position of the zero position see drawing below (nodge at top)

Signal definition for custom rotation angles

Custom angles <360°

When programming the electrical angle of rotation of <360°, the remaining non-effective range of rotation is divided equally into high and low.

